Carnosine inhibits ATP production in cells from malignant glioma.
نویسندگان
چکیده
OBJECTIVES Recently, it was revealed that carnosine inhibits growth of cells isolated from human malignant glioma. In order to understand how this effect is mediated, experiments were performed that addressed a possible influence of carnosine on energy metabolism. METHODS Cells from the glioma line T98G and primary cultured cells from human malignant glioma were cultivated in the presence of carnosine and inhibitors of cellular energy metabolism. As a specific inhibitor for anaerobic glycolysis, oxamate, and as an inhibitor for mitochondrial oxidative phosphorylation, potassium cyanide, were used, and the influence on ATP production was determined using cell-based assays. RESULTS The experiments identified glycolysis as crucial for ATP production in gliomas. In addition, ATP production by mitochondrial activity did not significantly contribute to ATP production and carnosine was identified to be an inhibitor of the vital anaerobic glycolysis. DISCUSSION Carnosine might be considered as a potential drug for the treatment of malignant glioma or other tumors since it inhibits the glycolytic energy metabolism that is crucial for cancer cells and malignant gliomas as shown in the current study. This is especially interesting since the dipeptide is a naturally occurring substance that should be well tolerated.
منابع مشابه
Pyruvate attenuates the anti-neoplastic effect of carnosine independently from oxidative phosphorylation
Here we analyzed whether the anti-neoplastic effect of carnosine, which inhibits glycolytic ATP production, can be antagonized by ATP production via oxidative phosphorylation fueled by pyruvate. Therefore, glioblastoma cells were cultivated in medium supplemented with glucose, galactose or pyruvate and in the presence or absence of carnosine. CPI-613 was employed to inhibit the entry of pyruvat...
متن کاملCarnosine inhibits KRAS-mediated HCT116 proliferation by affecting ATP and ROS production.
Carnosine is a natural dipeptide that has generated particular interest for its antioxidant, anti-aging and especially for its antiproliferative properties. In this study, we demonstrate that carnosine inhibits the proliferation of human HCT116 colon cancer cells. In this cell line, the activating KRAS mutation induces mitochondrial ROS, the signaling molecules for cell proliferation. We observ...
متن کاملCarnosine Inhibits the Proliferation of Human Gastric Cancer SGC-7901 Cells through Both of the Mitochondrial Respiration and Glycolysis Pathways
Carnosine, a naturally occurring dipeptide, has been recently demonstrated to possess anti-tumor activity. However, its underlying mechanism is unclear. In this study, we investigated the effect and mechanism of carnosine on the cell viability and proliferation of the cultured human gastric cancer SGC-7901 cells. Carnosine treatment did not induce cell apoptosis or necrosis, but reduced the pro...
متن کاملO24: Functional Role of the K2P Potassium Channel TASK-3 in Glioma
TASK-3, a two-pore-domain (K2P) potassium channel, has been implicated as important regulator for the effector function and proliferation of T-cells. Interestingly, TASK-3 has also a functional impact on tumor cells. Therefore, we sought to investigate whether TASK3 modulation might have a therapeutic potential for malignant gliomas by a variety of phenotypical and functional in vitro assays mi...
متن کاملL-carnosine inhibits high-glucose-mediated matrix accumulation in human mesangial cells by interfering with TGF-β production and signalling.
BACKGROUND Transforming growth factor beta is recognized as a major cytokine in extracellular matrix (ECM) pathobiology as occurs in diabetic nephropathy. While experimental studies have advanced a protective role of carnosine for diabetic complications, a link between carnosine, TGF-β and matrix accumulation remains to be elucidated. In the present study, we tested the hypothesis that L-carnos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurological research
دوره 32 1 شماره
صفحات -
تاریخ انتشار 2010